Water is essential to life as we know it. Water is one of the more abundant molecules and the one most critical to life on Earth. Water comprises approximately 60-70% of the human body. Without it, life as we know it simply would not exist.

The polarity of the water molecule and its resulting hydrogen bonding makes water a unique substance with special properties that are intimately tied to the processes of life. Life originally evolved in a watery environment, and most of an organism’s cellular chemistry and metabolism occur inside the watery contents of the cell’s cytoplasm. Special properties of water are its high heat capacity and heat of vaporization, its ability to dissolve polar molecules, its cohesive and adhesive properties, and its dissociation into ions that leads to generating pH. Understanding these characteristics of water helps to elucidate its importance in maintaining life.

Chemical and physical properties

Water’s polarity

One of water’s important properties is that it is composed of polar molecules: the hydrogen and oxygen within water molecules (H2O) form polar covalent bonds. While there is no net charge to a water molecule, water’s polarity creates a slightly positive charge on hydrogen and a slightly negative charge on oxygen, contributing to water’s properties of attraction. Water generates charges because oxygen is more electronegative than hydrogen, making it more likely that a shared electron would be near the oxygen nucleus than the hydrogen nucleus, thus generating the partial negative charge near the oxygen.

As a result of water’s polarity, each water molecule attracts other water molecules because of the opposite charges between water molecules, forming hydrogen bonds. Water also attracts or is attracted to other polar molecules and ions. We call a polar substance that interacts readily with or dissolves in water hydrophilic (hydro- = “water”; -philic = “loving”). In contrast, nonpolar molecules such as oils and fats do not interact well with water. A good example of this is vinegar and oil salad dressing (an acidic water solution). We call such nonpolar compounds hydrophobic (hydro- = “water”; -phobic = “fearing”).

Water’s states: Gas, Liquid, and Solid

The formation of hydrogen bonds is an important quality of the liquid water that is crucial to life as we know it. As water molecules make hydrogen bonds with each other, water takes on some unique chemical characteristics compared to other liquids and, since living things have a high water content, understanding these chemical features is key to understanding life. In liquid water, hydrogen bonds constantly form and break as the water molecules slide past each other. The water molecules’ motion (kinetic energy) causes the bonds to break due to the heat contained in the system. When the heat rises as the water boils, the water molecules’ higher kinetic energy causes the hydrogen bonds to break completely and allows water molecules to escape into the air as gas (steam or water vapor). Alternatively, when water temperature reduces and water freezes, the water molecules form a crystalline structure maintained by hydrogen bonding (there is not enough energy to break the hydrogen bonds) that makes ice less dense than liquid water, a phenomenon that we do not see when other liquids solidify.

Water’s lower density in its solid form is due to the way hydrogen bonds orient as they freeze: the water molecules push farther apart compared to liquid water. With most other liquids, solidification when the temperature drops include lowering kinetic energy between molecules, allowing them to pack even more tightly than in liquid form and giving the solid a greater density than the liquid.

The lower density of ice causes it to float at the surface of liquid water, such as in an iceberg or ice cubes in a glass of water. In lakes and ponds, ice will form on the water’s surface creating an insulating barrier that protects the animals and plants life in the pond from freezing. Without this insulating ice layer, plants and animals living in the pond would freeze in the solid block of ice and could not survive. The expansion of ice relative to liquid water causes the detrimental effect of freezing on living organisms. The ice crystals that form upon freezing rupture the delicate membranes essential for living cells to function, irreversibly damaging them. Cells can only survive freezing if another liquid like glycerol temporarily replaces the water in them.

Water’s high heat capacity

Water’s high heat capacity is a property that hydrogen bonding among water molecules causes. Water has the highest specific heat capacity of any liquids. We define specific heat as the amount of heat one gram of a substance must absorb or lose to change its temperature by one degree Celsius. For water, this amount is one calorie. It, therefore, takes water a long time to heat and a long time to cool. In fact, water’s specific heat capacity is about five times more than that of sand. This explains why the land cools faster than the sea. Due to its high heat capacity, warm-blooded animals use water to more evenly disperse heat in their bodies: it acts in a similar manner to a car’s cooling system, transporting heat from warm places to cool places, causing the body to maintain a more even temperature.

Water’s heat of vaporization

Water also has a high heat of vaporization, the amount of energy required to change one gram of a liquid substance to a gas. A considerable amount of heat energy (586 cal) is required to accomplish this change in water. This process occurs on the water’s surface. As liquid water heats up, hydrogen bonding makes it difficult to separate the liquid water molecules from each other, which is required for it to enter its gaseous phase (steam). As a result, water acts as a heat sink or heat reservoir and requires much more heat to boil than does a liquid such as ethanol (grain alcohol), whose hydrogen bonding with other ethanol molecules is weaker than water’s hydrogen bonding.

Eventually, as the water reaches its boiling point of 100° Celsius (212° Fahrenheit), the heat is able to break the hydrogen bonds between the water molecules, and the kinetic energy (motion) between the water molecules allows them to escape from the liquid as a gas. Even when below its boiling point, water’s individual molecules acquire enough energy from other water molecules such that some surface water molecules can escape and vaporize: we call this process evaporation.

The fact that hydrogen bonds need to be broken for water to evaporate means that bonds use a substantial amount of energy in the process. As the water evaporates, energy is taken up by the process, cooling the environment where the evaporation is taking place. In many living organisms, including in humans, the evaporation of sweat, which is 90 percent water, allows the organism to cool so that it can maintain homeostasis of body temperature.

Water’s solvent properties

Since water is a polar molecule with slightly positive and slightly negative charges, ions and polar molecules can readily dissolve in it. Therefore, we refer to water as a solvent, a substance capable of dissolving other polar molecules and ionic compounds. The charges associated with these molecules will form hydrogen bonds with water, surrounding the particle with water molecules. We refer to this as a sphere of hydration, or a hydration shell, as the figure below illustrates and serves to keep the particles separated or dispersed in the water.

When we add ionic compounds to water, the individual ions react with the water molecules’ polar regions and their ionic bonds are disrupted in the process of dissociation. Dissociation occurs when atoms or groups of atoms break off from molecules and form ions. Consider table salt (NaCl, or sodium chloride): when we add NaCl crystals to water, the NaCl molecules dissociate into Na+and Cl ions, and spheres of hydration form around the ions, as the figure above illustrates. The partially negative charge of the water molecule’s oxygen surrounds the positively charged sodium ion. The hydrogen’s partially positive charge on the water molecule surrounds the negatively charged chloride ion.

Water’s cohesive and adhesive properties

Have you ever filled a glass of water to the very top and then slowly added a few more drops? Before it overflows, the water forms a dome-like shape above the rim of the glass. This water can stay above the glass because of the property of cohesion. In cohesion, water molecules are attracted to each other (because of hydrogen bonding), keeping the molecules together at the liquid-gas (water-air) interface, although there is no more room in the glass.

Cohesion allows for surface tension, the capacity of a substance to withstand rupturing when placed under tension or stress. This is also why water forms droplets when on a dry surface rather than flattening by gravity. When we place a small scrap of paper onto a water droplet, the paper floats on top even though the paper is denser (heavier) than the water. Cohesion and surface tension keeps the water molecules’ hydrogen bonds intact and support the item floating on the top. It’s even possible to “float” a needle on top of a glass of water if you place it gently without breaking the surface tension.

These cohesive forces are related to water’s property of adhesion, or the attraction between water molecules and other molecules. This attraction is sometimes stronger than water’s cohesive forces, especially when the water is exposed to charged surfaces such as those on the inside of thin glass tubes known as capillary tubes. We observe adhesion when water “climbs” up the tube placed in a glass of water: notice that the water appears to be higher on the tube’s sides than in the middle. This is because the water molecules are attracted to the capillary’s charged glass walls more than they are to each other and therefore adhere to it. We call this type of adhesion capillary action.

Why are cohesive and adhesive forces important for life? Cohesive and adhesive forces are important for transporting water from the roots to the leaves in plants. These forces create a “pull” on the water column. This pull results from the tendency of water molecules to evaporate on the plant’s surface to stay connected to water molecules below them, and so they have pulled along. Plants use this natural phenomenon to help transport water from their roots to their leaves. Without these properties of water, plants would be unable to receive the water and the dissolved minerals they require.

Water in nature

The waters present in nature are distinguished, considering the environment, in meteoric waters, those present in the atmosphere and that fall on Earth in various forms (rain, snow, hail, etc..), and lithospheric waters, those found on Earth (surface waters) or within it (groundwater).

The quantity and nature of the substances that are dissolved in them depend on the soils with which they come into contact: there are acid waters, when they contain humic acids, carbonic acid, boric acid, hydrogen sulfide, etc. (they are also called aggressive waters because they attack the metal walls of pipes, boilers, etc.); hard waters, if they are dissolved in calcium and magnesium salts in the form of sulfates, bicarbonates and chlorides.

The water reserves on Earth are kept constant through a series of physical and biochemical phenomena that together constitute a natural cycle of fundamental importance. Marine and continental water, subject to continuous evaporation due to the action of solar heat, rises in the atmosphere where it remains for a variable period of time before returning to the earth’s surface in the form of rain, snow and hail or, to a lesser extent, dew and frost. The water vapor, in fact, diffused in the atmosphere by air currents, tends to condense due to a drop in temperature in tiny droplets or ice crystals that form around tiny particles (condensation nuclei) always present in the atmosphere.

When the water droplets or ice crystals reach such a weight that the ascending currents are no longer able to support, we have the phenomenon of meteoric precipitation that closes the part of the water cycle that takes place in the atmosphere. The water that falls directly on the sea and lakes or that feeds the glaciers is immediately subject to evaporation so that part of it returns to the atmosphere with a simple and short cycle. More complex are instead the events of that part of water that falls on the ground: a certain amount flows on the surface (partly evaporating during the journey), participating in the phenomena of geomorphological modeling, until it reaches the sea or the continental rivers; a part is absorbed by plants that return it to the atmosphere through transpiration; a part is used by the animal world and returns to the cycle through the excretory and putrefactive processes; a part penetrates into the subsoil.

Of the water that circulates in the subsoil, a certain amount goes up by capillarity to the surface where it evaporates, a part remains in the pores and cracks of the rocks as pellicular water or as stagnant water leaving the hydrological cycle for an indefinite time, a part forms the water tables that can flow to the surface through natural springs or wells dug by man (even the water used in various human activities is part of the cycle after a more or less long time) or feed underground the sea or streams and lakes. However different and complicated are the events of the water that participates in the hydrological cycle, it can be considered that the balance closes in equilibrium, in the sense that the amount of water that completes it is overall constant. Even if a certain amount of water penetrates into the soil and chemically combines with some of the minerals that make up the rocks, being subtracted from the cycle, it can be considered that this loss is compensated in the subsoil by the so-called juvenile water.

Related keywords

  • Water vapor
Notify of

Inline Feedbacks
View all comments
Scroll to Top