Degenerate matter

Tagged: 

  • Degenerate matter

    Posted by Encyclios on April 29, 2023 at 7:26 AM

    Degenerate matter is a highly dense state of fermionic matter in which particles must occupy high states of kinetic energy in order to satisfy the Pauli exclusion principle.

    Under extremely high pressure, as in the cores of dead stars, ordinary matter undergoes a transition to a series of exotic states of matter collectively known as degenerate matter, which are supported mainly by quantum mechanical effects. In physics, “degenerate“ refers to two states that have the same energy and are thus interchangeable.

    Degenerate matter is supported by the Pauli exclusion principle, which prevents two fermionic particles from occupying the same quantum state. Unlike regular plasma, degenerate plasma expands little when heated, because there are simply no momentum states left. Consequently, degenerate stars collapse into very high densities. More massive degenerate stars are smaller, because the gravitational force increases, but pressure does not increase proportionally.

    Electron-degenerate matter is found inside white dwarf stars. Electrons remain bound to atoms but are able to transfer to adjacent atoms. Neutron-degenerate matter is found in neutron stars. Vast gravitational pressure compresses atoms so strongly that the electrons are forced to combine with protons via inverse beta-decay, resulting in a superdense conglomeration of neutrons. Normally free neutrons outside an atomic nucleus will decay with a half life of just under 15 minutes, but in a neutron star, the decay is overtaken by inverse decay.

    Cold degenerate matter is also present in planets such as Jupiter and in the even more massive brown dwarfs, which are expected to have a core with metallic hydrogen. Because of the degeneracy, more massive brown dwarfs are not significantly larger. In metals, the electrons can be modeled as a degenerate gas moving in a lattice of non-degenerate positive ions.

    Encyclios replied 1 month, 1 week ago 1 Member · 0 Replies
  • 0 Replies

Sorry, there were no replies found.