Reply To: What is matter?

  • Encyclios

    April 29, 2023 at 6:48 AM

    Extensive and intensive properties

    If you think about the various observable properties of matter, it will become apparent that these fall into two classes. Some properties, such as mass and volume, depending on the quantity of matter in the sample we are studying. Clearly, these properties, as important as they may be, cannot by themselves be used to characterize a kind of matter; to say that “water has a mass of 2 kg” is nonsense, although it may be quite true in a particular instance. Properties of this kind are called extensive properties of matter.

    This definition of the density illustrates an important general rule: the ratio of two extensive properties is always an intensive property.

    Suppose we make further measurements, and find that the same quantity of water whose mass is 2.0 kg also occupies a volume of 2.0 liters. We have measured two extensive properties (mass and volume) of the same sample of matter. This allows us to define a new quantity, the quotient m/V which defines another property of water which we call the density. Unlike the mass and the volume, which by themselves refer only to individual samples of water, the density (mass per unit volume) is a property of all samples of pure water at the same temperature. Density is an example of an intensive property of matter.

    Intensive properties are extremely important because every possible kind of matter possesses a unique set of intensive properties that distinguish it from every other kind of matter. In other words, intensive properties serve to characterize matter. Many of the intensive properties depend on such variables as the temperature and pressure, but the ways in which these properties change with such variables can themselves be regarded as intensive properties.

    The more intensive properties we know, the more precisely we can characterize a sample of matter.

    Some intensive properties can be determined by simple observations: color (absorption spectrum), melting point, density, solubility, acidic or alkaline nature, and density are common examples. Even more fundamental, but less directly observable, is chemical composition.